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1. Introduction, equivalent to the one formulated in §2. In the
separated problem the “state” p(t ,’) at time t is a

In this paper we are concerned with the existence funct ion obeying a linear , parabolic partial differ—
of optimal controls for problems of the following erftial equation (3. i~). The coefficients of ~~~~kind. Let denote the process which we wish to depend on the observations and ~octrol.~ ,

control, ‘
~

‘

~~ 
the observation process and U~ the 0 < t < T. The solution p(t,x) is related in a

si~ple way to the unnormalized conditional densitycontrol process, 0 < t < T, with T fixed . The q(t x) of X given observations I act controlestate and observati~n p~ocesses are governed by ‘ t’ s
stochastic differential equations U for s < t. See (3 .6 ) .  The proof of this fact

a —

makes use of probabilistic solutions to a “backward”)dW(a) dXt 
= b (t,Xt,Y~

,Ut)dt + a(t,x
~
,Y
~ ~ partial differential equation adjoint to the

“forward” equation (3.14) , an idea already exploited(b) dlt = h(t,x
~
)dt + dW~. in [3] for the nonlinear filter problem. However ,

has values in N—dimensional RN, 
~~ 

va~~tes in 
unlike [3] we work with (3.14) instead of the Zakai
equation (3.7) for q. In this way , it6 stochastic

and U~ values in ‘~~c R~
’. [Only some notational integrals and results about stochastic PDE’s are

avoided in the analysis. For the nonlinear filtercomplications are involved if vector—valued oh— or:oier , et / 3. .) was der ioed ~y Cavi o [1~ .servations are considered. X
0 has given

d Y = 0. In 2. Formulation of the orob en.distribution, with density p
0

(x ) , an 0
(1.1), W~ ~~~ 

are independent Wiener processes . 
We make the following assumptions about the tuuo—

tions b,c7,h in (1.1).
The prob1e~ is to minimize a criterion of the -

form (A1) 0 and its partial derivatives

~ (1 2) 

= l,...,N, are bounded, continuous functions of
3 — F(t,Xt,U~

)dt + G(XT 
(t,x,y). Moreover, a has an inverse cr1, which is a
bounded function of ( t ,x ,y) .

(A2) b(t,x,y,u) = b0(t,x,y) + ub1(t ,x,y), where
It is customary to require that be measurable 

and b1 are bounded , continuous functions of V
with respect to the 0—algebra generated by observa— (t ,x,y).
tions 0 a t. We call this the strict sense (A

3
) h ,ah/a t ,ah/ a x ,a2h/ax ~x 1 , j  = 1,.. .,Ni i i ’version of the problem. For several years the

are bounded, continuous functions.question of proving a general theorem about existence
of optima], controls in the strict sense has been open .

We also assume:We do not obtain such a result here. However, we
obtain an existence theorem in which a somewhat wider (A14) ~~ is a convex, compact subset of Re .
class of control processes is admitted . Roughly
speaking, this wider class of controls is obtained as (A

5
) The density p

0(x) of is in L2(R N ) ,
follows. Let

~~Pft0
h s .xs dx — 

1 r~ 2 (~~ )d~ (1.3) J xJ
Lp~(x)dx < for some i > 1.

RNs 2j 0 s]’

Then ~~~~ are independent Wiener processes under We formulate the problem on the “canonical”
sample space

a new probability measure P 0related to the original adP = C ( [ O ,T ] ; R
N

) X C([0,T] ;R1) X L2([0,T);ok),probability measure P by = _Z
T . In the wide

sense formulation we wish to require merely that U
3 whose elements W satisfy

for s < t be independent of future increments 0

~e( t ) (x ( w ) r ( ~J i ) U ( w ) )  0 < t < T  ~~~~~~Y — Y for t < P < r with respect to ~~ . In = t ‘ t ‘ t — —r P
§2 we give a precise formulation of this idea, in We give C([0,T] ;Rd) for d 1 N the usual rio
which we define the control as the joint distribution topology; and we give L2((O ,T];*) the weak ~~~measure of the processes Y,U. topology , which is metrizable since ~~ is compact.

VWe consider the following increasing families of
Our method depends on introducing another a—algebras :

atochastic control problem, which we call a
“separat ed” problem. This separated problem is 
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= a{x , s < t} J (IT ) among s t r i c t  sense admissible contr o l s ;  but it
has not been shown that a strict sense optimal con-
trol exists. By admitting wider sense controls S € ~~~,

= 

~~~~ J u 8te. s < we in effect  allow the control Ut to dep end on

auxiliary randomizations in addi t ion to the observa—
= V 

~~~~~
. tions Y for s < t .

5 —

3. The f i l tering equations.Definition. An admissible control is a probability
measure iT on (0 , ~~) such that is a ~ Given trajectories I and U for the obser’cationWiener process.

and control processes , consider the elliptic par:ia.
differential operators associated with 1. )(a):Let ~ denote the set of all admissible controls

~~ . Each ~T ~ determines the joint distribution
N 32measure P~ of (X ,Y ,U) as follows. Given 

______ + b.V , (3.:)
Y €~ )[O ,T];R1) and U £ L2 ( [ O ,T] ;~~~) let be 

Lt = 
~ •~~~1

a
~~ 3x.3~~

the unique probability measure on (0 , ~~) such that
where a = and V is the gradient in x. Let~Y ,U is the solution to the nartingale problem [6]

associated with (l.l)(a), and 
N r N 3h 1 ~= 13 0 Lt 

= L
t 

— 
t i l{j l ij x~ ~

a. 

~
—j -

~~

.—- , ( 3 . 2 )

for all Borel S RN. Let h2e(t ,x) = 
~~ Y~(aV h,Vh) — + L~h) — -i-’ . ( 3 .3 )

~~(dx ,dy ,du)= ~
Y
~U(~~ sS(dY d~~

Let p(t ,x ) be the unique solution in
and define P

~ 
by 

L2([0,T] ;~~’) fl C([3,: R ~~ to the partial differential
equation

dPIT
*

0 = Z~ (2.1) 
= + e(t ,x ) p  (3 , 14)dP~ 3t t

with ZT as in (1 .3) .  It can be shown that there with p (0,x )  = p
0~

x .  The following key formula can be
exist independent PiT Wiener processes Wt and W~ proved. Given it € ~~~, then for every bounded con—
such that (1.1) holds Pt_almost surely. tinuous f

0
Let us ~~ite E5,L for expectations with respect p(t ,x)exp[Y~h~t ,x))f~x~Ix = E f(Xt~

Z
~~~~

]
~ ~~~~~~~~

to 
~~~~ 

respectively. Then (1.2) becomes 
IRN

iT_almost surely. The proof involves the backwardj ( °)  E

~~~

= F(t,X ,~~ )dt + ~~~~~~ ( 2 . 2 )  partial different ia l  equation adjoint to (3 . 1 4 ) ,  to0 -

whose solutions an appropriate version of the Feynman—
Kac formula is applied .We make the following assumptions about F and G.

Let(A6 ) F,G are measurable. For fixed (t,x),
F(t,x,.) is continuous and convex on ~~(. For some 

q(t,x)  = p(t ,x)exp[Y
~
h(t,x ) J .  (3 .6 )C, m > 0,

0 < F(t ,x ,u) < C ( l+ I X I ) m Equation (3.5) implies that q (t ,x) is the unnormal—
ized conditional density of given ~~ (in other

O < G (x )  < C(l#IxI)m . words, given past observations and controls Y Us ’ S

In (A ) we take 9. > a, which implies that for s < t.) It can be shown that q satisfies the
J( 1r ) < Zakai e~uation

Our result about existence of an optimal control = (L~ )~ q + hqdY~ (3 . 7~is:
with q (0,x) = p0 ( x ) .  The conditional density of

Theorem. There exists 1T* £ ~ such that J( 1T*) <
j(c) for all IT € ~~~. 

given 9~ is

In §‘ s 3, 14 we indicate the method of proof. A 
(t ,x) = 

q (t,x)  
(3.8)detailed proof will be given elsewhere.

qd,x Ii
The projection of any IT € ~ under (Y,U) Y

is Wiener measure p on C([0,T];R1). Let
14. A separated control problem .

1T~(dU) be a regular conditional distribution for U
given T. We call if admissible in the strict sense A well known idea is to introduce the conditional

• if if € ~ and iT~ is a Dirac measur e, concentrat ed distribution of a partially observed state X as the j 
~

at a point u (Y )  € L2~~0,TJ ;°k), p—almost surely. It “state” in a new “separated” control prob1~~.t This
can be shown that J( ) equais the inf imum of idea is the key to the classical aenaration princi~le
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for linear—quadratic problems [2, Chap. VI . l l) .  (5 ] A . Segall, Optimal control of noisy finite
Similar ideas occur in the control of partially oh— state ar~ov proces ses , iEEE rans. on Auto.
served Markov chains [5) and of dum p processes [ 14] .  Control , AC—22 (l977), 179—186.

In the present context , we may take p(t ,.) as [6) D .W . Stroock and S .B . J .  Varadhan , ~u l t i—the State St time in a separated problem , since the dimensional if f-os ion Processes , Spri nger—Verlag,co n d i t i o n a l  d i s tr tbu t ions  of are determined from 1979.
p(t ,’) through (3.6 ) and (3. 8 ) .  The dynanlcs of the
state process in the separated control problem are
(3.-~). Both e and the coefficient s of

depend on tra~ectorjes Y and U for the ob-
Servation and control processes. Let

= C(0 ,T] ; R 1) X L2([O,T];~~ ) .

For each (Y ,u) £ 0, p 9
Y ,U is the uniqu e solution

to (3. 14) with the given initial data p( O ,x )  = p
0

( x ) .
In (3 .6 )  we also write q qY~U for the unn ormal—
ized conditional density. From (2.1) and elementary
properties of conditional expectations with respect
to and 

~~~~~, (2.2) can be rewritten as

f
= j j F(t,X,~~~~

’ ‘~ (t,xjdx~t

~L0 RN

+ J G(x)q1~
U (T ,x )~~~diT .

RN J

The separated problem is to show that there exists
if £ ~ minimizing (14.1). Once this is shown, the
Theorem in §2 follows i~~ ed.iate1y.

The proof of existence of IT* proceeds as
follows. Let IT be any minimizing sequence in ~~~.

The sequence of probability measures 7T is tight ,

and hence a subsequence converges weakly to a limit

1T*, Moreover , ~ E ~~~. Finally, it is shown that

J( T T*) < Jim 5 (i T ) ;

the proof depends on linearity of b and convexity
of F in the control variable u (see assumptions
(A

2
), (A

6
) in §2.) as well ~- a  results from PDE about

continuous dependence on Y ,U of solutions p
’f~j to

‘ (3,14).
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